Reduction in metabolic noise reveals rejuvenation following transient severe caloric restriction

Author:

Levkovich Guy,Bendikov-Bar Inna,Malitsky Sergey,Itkin Maxim,Rusal Mark,Lokshtanov Dmitri,Shinder Dmitry,Sagi DrorORCID

Abstract

AbstractAmong land vertebrates, the laying hen stands out due to its great reproductive efficiency: producing an egg daily all year long. This production rate makes the laying hen a special model animal to study the general process of reproduction and aging. One unique aspect of hens is their ability to undergo reproductive plasticity and to rejuvenate their reproductive tract during molting, a standard industrial feed restriction protocol for transiently pausing reproduction, followed by improved laying efficiency almost to peak production. Here we use longitudinal metabolomics, immunology, and physiological assays to show that molting promotes reproduction, compresses morbidity, and restores youthfulness when applied to old hens. We identified circulating metabolic biomarkers that quantitatively predict the reproduction and age of individuals. Lastly, we introduce metabolic noise, a robust, unitless, and quantifiable measure for heterogeneity of the complete metabolome as a general marker that can indicate the rate of aging of a population. Indeed, metabolic noise increased with age in control hens, whereas molted hens exhibited reduced noise following molting, indicating systemic rejuvenation. Our results suggest that metabolic noise can be used as a quick and universal proxy for assessing successful aging treatments, accelerating the timeline for drug development.

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3