Design of a microwave spectrometer for high-precision Lamb shift spectroscopy of antihydrogen atoms
-
Published:2024-03-01
Issue:1
Volume:245
Page:
-
ISSN:3005-0731
-
Container-title:Interactions
-
language:en
-
Short-container-title:Interactions
Author:
Tanaka T. A.,Blumer P.,Janka G.,Ohayon B.,Regenfus C.,Asari M.,Tsukida R.,Higuchi T.,Tanaka K. S.,Crivelli P.,Kuroda N.
Abstract
AbstractWe have developed a microwave spectrometer for a measurement of the $$\varvec{2S_{1/2}-2P_{1/2}}$$
2
S
1
/
2
-
2
P
1
/
2
Lamb shift of antihydrogen atoms towards the determination of the antiproton charge radius. The spectrometer consists of two consecutive apparatuses, of which the first apparatus, Hyperfine Selector (HFS), filters out $$\varvec{2S_{1/2}(F=1)}$$
2
S
1
/
2
(
F
=
1
)
hyperfine states and pre-selects the $$\varvec{2S_{1/2}(F=0)}$$
2
S
1
/
2
(
F
=
0
)
state, and the second apparatus, MicroWave Scanner (MWS), sweeps the frequency around the target transition to obtain the spectrum. We optimized the geometry of the apparatuses by evaluating the S-parameter that represents the ratio of the reflected microwave signal over the input, utilizing microwave simulations based on the finite element method. The HFS was designed to obtain a resonant property at 1.1 GHz for an efficient removal of the $$\varvec{2S_{1/2}(F=1)}$$
2
S
1
/
2
(
F
=
1
)
hyperfine states, and the MWS was designed to realize weak frequency-dependency in the signal reflection. Also, the spatial distributions of microwave electric field were simulated. We report the design of the spectrometer and discuss an expected precision of the first measurement.
Funder
Japan Science and Technology Agency
Murata Science Foundation
H2020 Marie Skłodowska-Curie Actions
Eidgenössische Technische Hochschule Zürich
European Research Council
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Japan Society for the Promotion of Science
Yamada Science Foundation
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Hofstadter, R., McAllister, R.W.: Phys. Rev. 98, 217 (1955)
2. Pohl, R., et al.: Nature 466, 213–216 (2010)
3. Mohr, P.J., Taylor, B.N., Newell, D.B.: Rev. Mod. Phys. 80, 633–670 (2008)
4. Bezginov, N., Valdez, T., Horbatsch, M., et al.: Science 365, 1007 (2019)
5. Gao, H., Vanderhaeghen, M.: Rev. Mod. Phys. 94, 015002 (2022)