Contrasting Responses of Spring and Summer Potato to Climate Change in South Korea

Author:

Kim Yean-UkORCID,Webber Heidi

Abstract

AbstractThis paper assessed the effects of climate change and planting date adjustment on spring and summer potato in South Korea for the period 2061–2090. The study applied the SUBSTOR-Potato model and outputs of 24 general circulation models to capture future variability in climate conditions for four shared socioeconomic pathway-representative concentration pathway scenarios. Without planting date adjustment, tuber yield was projected to increase by approximately 20% for spring and summer potato, indicating that the CO2 fertilization effect would offset the adverse effect of rising temperature. The effect of planting date adjustment was significant only for spring potato, where overall climate change impact with the optimized planting date was approximately  +60%. For spring potato, the effects of rising temperature were bidirectional: temperature increases early in the year extended the growing season, whereas the higher temperature increases in June under the most severe climate change condition accelerated leaf senescence and reduced tuber bulking rate. Based on these results, different adaptation strategies could be established for spring potato for different climate change conditions. For example, developing frost-tolerant cultivars would continue to be recommended to plant earlier under the mild climate change conditions, whereas breeding mid-late maturity cultivars with high-temperature tolerance would be needed to delay senescence and enhance late tuber growth under the severe climate change conditions. Unlike spring potato, the breeding goal for summer potato of increasing high-temperature tolerance holds across all climate change conditions. Finally, these optimistic results should be interpreted with caution as the current model does not fully capture the effect of high-temperature episodes and the interactive effect between CO2 and temperature, which may reduce beneficial projected climate change impacts.

Funder

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3