Transplanting Hybrid Potato Seedlings at Increased Densities Enhances Tuber Yield and Shifts Tuber-Size Distributions

Author:

van Dijk Luuk C. M.ORCID,de Vries Michiel E.ORCID,Lommen Willemien J. M.ORCID,Struik Paul C.ORCID

Abstract

AbstractTo contribute to the development of a novel cropping system for potato grown from greenhouse-derived seedlings from hybrid true potato seeds, planting density trials were carried out under normal Dutch agronomic conditions. For two consecutive years, 5-week-old seedlings of two experimental genotypes were transplanted into farmers’ potato production fields at two contrasting locations: a flat-bed system on sandy soil and a traditional ridge system on clay soil. Planting densities were 6.25, 12.5, 25, 50, 100 and 200 plants/m2 in the flat-bed system, and 3.125, 4.688, 6.25, 12.5, 25 and 50 plants/m2 in the ridge system. In general, increasing planting density of hybrid seedlings per area decreased tuber fresh weight per plant and reduced the number of tubers per plant. On a per hectare basis, an increased planting density resulted in increased total tuber yield and number of tubers up to very high densities, but finally both parameters levelled off. Highest total tuber yields harvested were 107 and 45 Mg/ha for the flat-bed and ridge system, respectively. On flat-beds, the optimal planting density for total yield was 50 plants/m2. On ridges, planting density interacted with year and genotype, resulting in an optimum planting density of 25 plants/m2 to reach the maximum total yield. Obtained yields in the commercial size classes Baby Baker (20 < size class ≤ 35 mm) and Seed Tubers (28 < size class ≤ 50 mm) were in general very high on the flat-beds, with a maximum Seed Tuber yield of 64 Mg/ha at 50 plants/m2. The current study showed that transplanted hybrid seedlings are feasible alternatives for seed-tuber-grown systems for certain potato outlets.

Funder

NWO

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Food Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3