Wear Induced Sub-surface Deformation Characteristics of a 26 Wt% Cr White Cast Iron Subjected to a Destabilization Heat Treatment

Author:

Nayak U. Pranav,Schäfer Florian,Mücklich Frank,Guitar María Agustina

Abstract

AbstractIn the present work, the sub-surface microstructure of a heat treated and worn 26 wt% Cr white cast iron was investigated to gain better insight into the tribological behaviour of the material. The samples were destabilized at 980 °C for 0 (Q_0), 30 (Q_30) and 90 (Q_90) minutes followed by air cooling, and later subjected to dry-sliding linear reciprocating wear tests. The microstructural characterization of the area under the wear track was carried out using a combination of SEM, EDS and EBSD. Additionally, nanoindentation (NI) measurements were used to corroborate the mechanical behaviour with the microstructural observations. EBSD and NI measurements indicated that the matrix area underneath the wear track in Q_0 had undergone significant plastic deformation resulting in a drastic increase in hardness, whereas no such phenomena was observed in the Q_90. This was attributable to the relatively high amount of retained austenite in the former and a predominately martensitic matrix in the latter. Moreover, the large M7C3 eutectic carbides were less cracked in the destabilized samples compared to the as-cast sample owing to the presence of martensite and dispersed secondary carbides, leading to an increased matrix load-bearing capacity. These factors led to the destabilized samples showing a lower wear rate compared to the as-cast sample, and the Q_0 showing the best wear resistance amongst all the samples.

Funder

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3