Author:
MacLaren Alexander,Kadiric Amir
Abstract
AbstractA renewed interest in elastohydrodynamic lubrication (EHL) phenomena at high speeds, for which thermal effects strongly influence both traction and film thickness, has grown out of the challenges presented by high-speed geared transmissions in electric vehicles. This study uses a new ball-on-disc set-up employing the well-known ultra-thin-film interferometry technique to simultaneously measure EHL film thickness and traction at entrainment speeds up to 20 m/s and slide-roll ratios up to 100%. The effect of fluid composition is examined for Group I, II and III mineral oils, for two polyalphaolefins in Group IV, and for the traction fluid Santotrac 50. The effect of viscosity in the range 4–180 mPa.s is investigated by varying bulk fluid temperature. At high speeds, both film thickness and traction are considerably lower than predicted by conventional EHL theory. The contact is seen to be fully-flooded for all conditions tested. The widely-used thermal EHL correction of Gupta is shown to overcorrect for the film thickness reduction even at modest SRRs. Finally, the influence of the sliding direction on traction and film thickness is discussed for this set-up, and a thermal model is proposed to explain the observed behaviour.
Graphical abstract
Funder
UKRI EPSRC CASE Valvoline
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献