Abstract
Abstract
Conductive-atomic force microscopy (C-AFM) and molecular dynamics (MD) simulations are used to investigate time-dependent electrical contact resistance (ECR) at the nanoscale. ECR is shown to decrease over time as measured using C-AFM and estimated using two approaches from MD simulations, although the experiments and simulations explore different time scales. The simulations show that time dependence of ECR is attributable to an increase in real contact area due to atoms diffusing into the contact. This diffusion-based aging is found to be a thermally activated process that depends on the local contact pressure. The results demonstrate that contact aging, previously identified as an important mechanism for friction, can significantly affect electrical conduction at the nanoscale.
Graphical Abstract
Funder
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献