Diffusion-Driven Frictional Aging in Silicon Carbide

Author:

Nordhagen Even Marius,Sveinsson Henrik Andersen,Malthe-Sørenssen Anders

Abstract

Abstract Friction is the force resisting relative motion of objects. The force depends on material properties, loading conditions and external factors such as temperature and humidity, but also contact aging has been identified as a primary factor. Several aging mechanisms have been proposed, including increased “contact quantity” due to plastic or elastic creep and enhanced “contact quality” due to formation of strong interfacial bonds. However, comparatively less attention has been given to other mechanisms that enhance the “contact quantity”. In this study, we explore the influence of crystal faceting on the augmentation of “contact quantity” in cubic silicon carbide, driven by the minimization of surface free energy. Our observations reveal that the temporal evolution of the frictional aging effect follows a logarithmic pattern, akin to several other aging mechanisms. However, this particular mechanism is driven by internal capillary forces instead of the normal force typically associated with friction. Due to this fundamental distinction, existing frictional aging models fail to comprehensively explain the observed behavior. In light of these findings, we derive a model for the evolution of contact area caused by diffusion-driven frictional aging, drawing upon principles from statistical mechanics. Upon application of a normal force, the friction force is increased due to plastic creep. This investigation presents an alternative explanation for the logarithmic aging behavior observed and offers the potential to contribute to the development of more accurate friction models. Graphical Abstract

Funder

Norges Forskningsråd

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3