Comparing the Tribological Performance of Water-Based and Oil-Based Drilling Fluids in Diamond–Rock Contacts

Author:

Bhamra Jagjeevan S.,Everhard Eliah M.,Bomidi John A. R.,Dini Daniele,Ewen James P.

Abstract

AbstractOil-based drilling fluids are usually assumed to provide lower friction compared to their water-based alternatives. However, clear evidence for this has only been presented for steel–rock and steel–steel contacts, which are representative of the interface between the drillstring and the borehole or casing. Another crucial interface that needs to be lubricated during drilling is that between the cutter (usually diamond) and the rock. Here, we present pin-on-disc tribometer experiments that show higher boundary friction for n-hexadecane-lubricated diamond–granite contacts than air- and water-lubricated contacts. Using nonequilibrium molecular dynamics simulations of a single-crystal diamond tip sliding on α-quartz, we show the same trend as in the experiments of increasing friction in the order: water < air < n-hexadecane. Analysis of the simulation results suggests that the friction differences between these systems are due to two factors: (i) the indentation depth of the diamond tip into the α-quartz substrate and (ii) the amount of interfacial bonding. The n-hexadecane system had the highest indentation depth, followed by air, and finally water. This suggests that n-hexadecane molecules reduce the hardness of α-quartz surfaces compared to water. The amount of interfacial bonding between the tip and the substrate is greatest for the n-hexadecane system, followed by air and water. This is because water molecules passivate terminate potential reactive sites for interfacial bonds on α-quartz by forming surface hydroxyl groups. The rate of interfacial bond formation increases exponentially with normal stress for all the systems. For each system, the mean friction force increases linearly with the mean number of interfacial bonds formed. Our results suggest that the expected tribological benefits of oil-based drilling fluids are not necessarily realised for cutter–rock interfaces. Further experimental studies should be conducted with fully formulated drilling fluids to assess their tribological performance on a range of rock types. Graphical Abstract

Funder

Engineering and Physical Sciences Research Council

Baker Hughes

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3