Insights of the Ultralow Wear and Low Friction of Carbon Fiber Reinforced PTFE in Inert Trace Moisture Environment

Author:

Johansson Pontus,Elo Robin,Naeini Vahid Fadaei,Marklund Pär,Björling Marcus,Shi Yijun

Abstract

AbstractUltralow wear rates and low friction have been observed for carbon fiber reinforced PTFE (CF/PTFE) when sliding against steel or cast iron in dry gas environments. Although the strong environmental sensitivity of this tribosystem is well known, the origin of the outstanding tribological performance in dry gas remains unanswered. Some researchers attribute the low friction and wear to the formation of carbon-rich surfaces in the absence of oxygen and moisture in the environment. However, low friction between carbon surfaces is generally dependent on moisture. In this paper, extensive analyzes are conducted on the tribofilms formed on the CF/PTFE surface and the steel counterface after sliding in a high-purity nitrogen environment. TEM analysis of a cross-section of the tribofilm on the steel surface reveals that the sliding surface consists mainly of iron (II) fluoride and not carbon, even though a significant amount of carbon was observed near the surface. XPS and TEM analysis further revealed that the tribofilm formed on the worn composite surface consisted of nanoparticle agglomerates, anchored to the PTFE matrix and to each other by carbon with turbostratic structure. Turbostratic carbon also formed an ultrathin and surface-oriented superficial layer on top of the agglomerates. Governing mechanisms of the low friction and wear of the CF/PTFE—steel tribosystem were investigated by complementary tribotests with pure graphite samples and MD simulations of the identified surfaces. These indicated that the low friction between the carbon and iron fluoride in the tribofilms is due to poor adhesion between the distinctly different surfaces. Graphical Abstract

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3