Evaluating the Design and Repeatability of a Novel Device to Measure Friction of Mechanical Surrogate Skins in Contact with Cotton Textiles

Author:

Temel MevraORCID,Lloyd Alex B.ORCID,Johnson Andrew A.ORCID

Abstract

AbstractThe ability to measure the level of friction between the human skin and a given textile is critical across fashion and textiles sectors, not least for the development of sporting and protective clothing. A portable custom-made device capable of measuring friction during the skin-textile interaction across often difficult or impossible to investigate body regions with objective repeatability has been established. The friction between a pre-shrunk 100% cotton textile and a quantity of four control surfaces (transparent and patterned polycarbonate plastic, and silicon and lorica surrogate skin) was measured three times per day across five consecutive days. The results clearly demonstrated that the novel friction test device had an excellent repeatability of 0.94 and 0.93 intraclass corelation coefficient for static and dynamic friction coefficient measurement, respectively. The silicon surrogate skin control surface produced the highest friction coefficient, while the pattered polycarbonate plate demonstrated the lowest friction coefficient, suggesting that the physical features of the control surface material influenced the recorded coefficient of friction. It was also revealed that the relationship between the static and dynamic friction coefficient is dependent on the surface material.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3