Abstract
Abstract
General reductions in lubricant viscosities in many machine components mean that the role of lubricant additives in forming tribofilms has become increasingly important to provide adequate surface protection against scuffing. However, the relationship between scuffing and the formation and removal of tribofilms has not been systematically demonstrated. In this study, a step-sliding speed scuffing test based on contra-rotation using MTM-SLIM and ETM-SLIM has been employed to observe concurrently tribofilm thickness and the onset of scuffing. The initial sliding speed used was found to significantly affect scuffing performance since it determines the extent to which a tribofilm can form before critical sliding speed conditions are reached. In general, additives that formed thicker tribofilms, especially ZDDPs and triphenyl phosphate, gave effective protection against scuffing, though their protective tribofilms were progressively removed at higher sliding speeds, eventually resulting in scuffing.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献