Host plant identity and condition shape phytophagous insect communities on urban maple (Acer spp.) trees

Author:

Korányi DávidORCID,Markó Viktor

Abstract

AbstractBy mitigating the negative effects of urbanization, urban trees contribute significantly to the well-being of urban citizens. However, trees themselves are also exposed to urban stress that can influence tree condition and tree-herbivore interactions. Maple species (Acerspp.) are among the most commonly planted trees in urban areas throughout North America and Europe. Among these species, field, sycamore, and Norway maple are native to Europe, but tolerate environmental stress to varying degrees. Here, we compared the phytophagous insect communities in the canopy of these tree species in the city of Budapest, Hungary. We also examined the stress level [expressed as peroxidase (POD) enzyme activity], and physiological condition (expressed as degree of leaf necrosis and leaf fall) of the maple trees, and their relationship to herbivore abundance. We observed higher total abundance of phytophagous insects on field and sycamore maple compared to Norway maple. Most herbivorous species were associated with field maple, sycamore had the highest aphid densities, and Norway maple harbored the least specific phytophagous insect community. Field maple trees were in the best condition while Norway maple trees in the worst condition, i.e., with the highest proportion of necrotic leaf surface area. The super-abundant planthopper species,Metcalfa pruinosapositively affected the POD activity of trees, but did not influence their condition. On the contrary,M. pruinosaabundance was driven by tree condition, with higher numbers on healthier trees. Our findings suggest that the abundance of phytophagous insects in the canopy of maple trees is highly determined by tree condition, and in this study field maple had the highest and Norway maple the lowest tolerance for urban stress.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Ministry for Innovation and Technology

ELKH Centre for Ecological Research

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Agronomy and Crop Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3