Intercropping organic broccoli with Rhododendron tomentosum and Fagopyrum esculentum: a test of bottom-up and top-down strategies for reducing herbivory

Author:

Bui Thuy Nga T.,Mofikoya Adedayo,Blande James D.,Holopainen Jarmo K.,Himanen Sari J.

Abstract

AbstractBrassicaceous plants are attacked by a wealth of specialist herbivores that include the Diamondback moth (DBM) Plutella xylostella L. (Lepidoptera: Plutellidae), control of which requires novel biocontrol strategies. DBM is a cosmopolitan pest causing damage that varies yearly in Finland depending on the timing and extent of their migration. Intercropping with companion plants can hamper host location by herbivores or attract their natural enemies. We tested two sustainable companion plant-based protection strategies on field-grown broccoli (Brassica oleracea var. italica), which comprised 1) aromatic and repellent-releasing Rhododendron tomentosum (RT) (bottom-up strategy), and 2) nectar-producing buckwheat Fagopyrum esculentum (FE) (top-down strategy) combined with an early-season floating row cover (mechanical control) (MC + FE). In addition, a control (no companion plant or cover) and mechanical control (MC) without FE were included. DBM adults on yellow sticky traps and larvae on plants were counted, and feeding damage on leaves was quantified. Volatile organic compounds emitted by broccoli plants in control and RT plots, and emitted by boundary RT plants in RT plots, were identified and quantified. There was a mass outbreak of DBM in early summer with a population peak in mid-July when the second adult generation emerged. DBM adult densities were significantly lower in RT and MC + FE than in control plots. Broccoli in RT plots had a lower larval density and lower damage intensity than in control plots in the early-season. Larval densities and damage intensities were the highest in the latter half of July. Control plots had the highest number of larvae followed by RT, MC, and MC + FE plots. Damage intensities in control plots were significantly higher than in all other treatments throughout the season. Damage intensity was lower in MC and MC + FE plots than in RT plots at the end-of-July. R. tomentosum emitted two characteristic sesquiterpene alcohols, palustrol and ledol, but no evidence of adsorption and re-release of these compounds from Brassica plants grown in RT plots was found. We conclude that incorporating RT as a boundary plant and using a mechanical row cover reduces DBM damage on broccoli, but further multi-year trials under varying degrees of pest pressure are needed.

Funder

Niemi-säätiö

University of Eastern Finland

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Agronomy and Crop Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3