Towards a process selection method for embedded analytics

Author:

Bender TobiasORCID

Abstract

AbstractDriven by technological progress, business analytics is gaining momentum while paving the path for next-generation business process management. Especially, embedded real-time analytics offers new opportunities for business process intelligence and value creation. However, there are several obstacles that organizations face in their adoption process. A key challenge is to identify business processes that are suitable for embedded analytics and hold relevant value potential. Our research addresses this need by introducing an exploratory BPM method, namely a process selection method. Applying action design research and situational method engineering, we iteratively built, used, evaluated, and refined the theory-ingrained method artifact. The method provides organizations with guidance in selecting operational business processes, for which a reengineering project should be initiated.

Funder

University of St.Gallen

Publisher

Springer Science and Business Media LLC

Reference73 articles.

1. van der Aalst WMP, Bichler M, Heinzl A (2018) Robotic process automation. Bus Inf Syst Eng 60(4):269–272. https://doi.org/10.1007/s12599-018-0542-4

2. Agrawal A, Gans JS, Goldfarb A (2017) What to expect from artificial intelligence. MIT Sloan Manag Rev 58(3):23–26

3. APQC (2018) APQC Process classification framework (PCF)—cross industry—Excel Version 7.2.1. Apqc, September, 33. http://www.apqc.org/knowledge-base/documents/apqc-process-classification-framework-pcf-cross-industry-excel-version-520

4. APQC (2019) Manage financial resources: definitions and key measures (version 7.2.1). November, 1–38

5. Banerjee A, Bandyopadhyay T, Acharya P (2013) Data analytics: hyped up aspirations or true potential? Vikalpa 38(4):1–12. https://doi.org/10.1177/0256090920130401

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Business process management in the age of AI – three essential drifts;Information Systems and e-Business Management;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3