The heterogeneous nature of mechanically accelerated grain growth

Author:

Chen Elton Y.,Hamilton Parker,Boyce Brad L.,Dingreville RémiORCID

Abstract

AbstractWhile grain growth is traditionally viewed as a purely thermally driven process, nanocrystalline metals can undergo grain growth under mechanical loads, even at room temperature. We performed a detailed atomistic study of the heterogeneous nature of mechanically accelerated grain growth in a polycrystalline Pt nanowire. Using molecular dynamics simulations, we compared the grain-growth behavior of individual grains during tensile and shear cyclic loading, for three different equivalent strain levels, and at two temperatures. Pure thermal grain growth with no mechanical loading provided a baseline reference case. On average, grains that were already susceptible to thermal grain growth were stimulated to grow faster with mechanical loading, as expected. However, when analyzed on a grain-by-grain basis, the results were far more complex: grains that grew fastest under one stimuli were less accelerated under other stimuli. Even when the magnitude of loading changed, the relative growth of individual grains was distorted. We interpret this complexity from the perspective of superimposed growth mechanisms.

Funder

National Nuclear Security Administration

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational modeling of grain boundary segregation: A review;Computational Materials Science;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3