Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent

Author:

Lesiak B.,Trykowski G.,Tóth J.,Biniak S.,Kövér L.,Rangam N.,Stobinski L.,Malolepszy A.

Abstract

AbstractGraphene oxide (GO) prepared from graphite powder using a modified Hummers method and reduced graphene oxide (rGO) obtained from GO using different reductants, i.e., sodium borohydride, hydrazine, formaldehyde, sodium hydroxide and L-ascorbic acid, were investigated using transmission electron microscopy, X-ray diffraction, Raman, infrared and electron spectroscopic methods. The GO and rGOs’ stacking nanostructure (flake) size (height x diameter), interlayer distance, average number of layers, distance between defects, elementary composition, content of oxygen groups, C sp3 and vacancy defects were determined. Different reductants applied to GO led to modification of carbon to oxygen ratio, carbon lattice (vacancy) and C sp3 defects with various in-depth distribution of C sp3 due to oxygen group reduction proceeding as competing processes at different rates between interstitial layers and in planes. The reduction using sodium borohydride and hydrazine in contrary to other reductants results in a larger content of vacancy defects than in GO. The thinnest flakes rGO obtained using sodium borohydride reductant exhibits the largest content of vacancy, C sp3 defects and hydroxyl group accompanied by the smallest content of epoxy, carboxyl and carbonyl groups due to a mechanism of carbonyl and carboxyl group reduction to hydroxyl groups. This rGO similar diameter to GO seems to result from a predominant reduction rate between the interstitial layers. The thicker flakes of a smaller diameter than in GO are obtained in rGOs prepared using remaining reductants and result from a higher rate of reduction of in plane defects.

Funder

Institute of Physical Chemistry PAS

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3