Comparative study on the influence of surface characteristics on de-icing evaluation

Author:

Memon Halar,Mirshahidi Kiana,Zarasvand Kamran Alasvand,Golovin Kevin,De Focatiis Davide S. A.,Choi Kwing-So,Hou XianghuiORCID

Abstract

AbstractA comparative study of de-icing evaluation methods was conducted in this work, and their variations in response to surface characteristics were investigated. The mechanical de-icing measurements include centrifugal, push, and tensile methods. The centrifugal and the horizontal push (shear) methods suggested a linear relationship of ice adhesion strength with surface roughness, whereas the tensile (normal) method indicated an inverse curvilinear relationship with contact angle hysteresis. A partial correlation of contact angle hysteresis on the shear-based methods was also indicated over a specified range of surface roughness. Further attempts were also made on 1H,1H,2H,2H-perfluorooctyltriethoxysilane-coated surfaces, and the ice adhesion indicated a clear reduction in the normal de-icing method, whereas the shear-based methods did not show a considerable change in ice adhesion, highlighting their mechanical forces-centric response. Lastly, a further evaluation using a hybrid de-icing method was conducted, to verify the influence of surface characteristics on ice removal involving heating, which demonstrated a partial correlation of energy consumption with the ice adhesion strength over a specified range of surface roughness. The results obtained in this study provide crucial information on the influence of surface characteristics on ice adhesion and offer material-dependent correlations of the popular de-icing evaluation methods. The conclusions could be applied to define an appropriate testing method for the evaluation of icephobic surfaces and coatings. Graphical abstract

Funder

Horizon 2020

Engineering and Physical Sciences Research Council

Faculty of Engineering, University of Nottingham

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3