Investigation of the microstructural behavior of Al–Mg–Si(X)–Mn aluminum alloys based on biaxial hot tensile tests

Author:

Lypchanskyi OleksandrORCID,Kurri Nikhil Reddy,Korpała Grzegorz,Augustyn Bogusław,Kapinos Dawid,Prahl Ulrich

Abstract

Abstract This study investigates the microstructural behavior of laboratory-produced Al–Mg–Si(X)–Mn aluminum alloys, focusing on the influence of varying Si content during biaxial hot tensile testing. Alloys with Si contents of 0.7%, 0.9%, and 1.3% were subjected to biaxial deformation at temperatures of 200 °C, 300 °C, and 400 °C. Using digital image correlation analysis, the impact of Si content on microstructural evolution under biaxial tensile loading was analyzed. Force–displacement analysis revealed a consistent inverse relationship between temperature and the maximum force required to initiate strain. At the temperature of 200 °C, the Al–Mg–Si(1.3)–Mn alloy required a maximum force of 1500 N, while at the temperature of 400 °C this force decreased to 900 N. The degree of anisotropy varied, with higher Si alloys exhibiting increased resistance to deformation in the transverse direction. In particular, the Al–Mg–Si(1.3)–Mn alloy showed pronounced strain anisotropy, with large major true strain φ1 values reaching up to 0.32 at 400 °C, compared to 0.26 at 300 °C and 0.2 at 200 °C. Microstructural analysis using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectrometry (EDS) showed minimal changes at low temperatures, while increased dislocation density and grain boundary distortion were observed at elevated temperatures. The β-Mg2Si precipitates, influenced by Si content and temperature, significantly affected the mechanical properties. In the Al–Mg–Si(0.7)–Mn alloy, precipitates were predominantly 1–3 µm in diameter, whereas in the Al–Mg–Si(1.3)–Mn alloy, precipitates grew to 4–8 µm at higher Si content. These findings provide critical insights into the mechanical response and deformation mechanisms of aluminum alloys under biaxial tensile conditions, essential for optimizing material performance in engineering applications. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3