Computational and experimental designing of imprinted sorbent for the determination of nitroxidative stress products: an analysis of 4-hydroxyphenylacetic acid conversion

Author:

Janczura Marta,Sobiech Monika,Giebułtowicz Joanna,Luliński PiotrORCID

Abstract

AbstractIt this paper, the comprehensive design process was carried out to fabricate selective, molecularly imprinted polymer (MIP). The material was used as a sorbent in the optimized analytical method, aimed at verifying the hypothesis that the conditions of an analytical process could convert 4-hydroxyphenylacetic acid to 4-hydro-3-nitrophenylacetic acid, comprising a series of novel studies. The design stage consisted of the analysis of specificity of the MIP, synthesized from the cross-linker and used five various functional monomers independently, in the presence of four different templates. The MIP from 1-vinylimidazole, imprinted by 4-hydroxyphenylacetic acid, revealed the highest specificity in relation to 4-hydro-3-nitrophenylacetic acid, with an affinity factor equal to 3, and the highest selectivity from a group of structurally similar and biologically important biomolecules. The theoretical analysis revealed that electrostatic interaction between the analyte and the polymer matrix enhanced selectivity. The physicochemical characterization showed the specific surface area of the MIP as being equal to 368.6 m2 g−1, and the presence of nitrogen atoms at the level of 6.80% wt., confirming the monomer residue in the material structure. The MIP was applied in the solid phase extraction protocol, allowing for the analysis of 4-hydroxy-3-nitrophenylacetic acid in a human urine sample. Finally, the conversion of 4-hydroxyphenylacetic acid in human urine in nitrate and nitrite salts at low pH conditions revealed an almost twofold increase in 4-hydro-3-nitrophenylacetic acid to 775 ± 81 ng L−1. The results also confirmed the applicability of the new MIP sorbent for the purpose of analysis of low levels of analyte, present in the complex sample.

Funder

Interdisciplinary Centre for Mathematical and Computational Modelling

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3