On the optimisation of phase fractions in harmonic structure materials

Author:

Shokry Abdallah,Ståhle Per,Orlov DmytroORCID

Abstract

AbstractMaterials with heterogeneous microstructures architected across several scales are becoming increasingly popular in structural applications due to unique strength–ductility balance. One of the most popular 3D-architected structure designs is harmonic structure (HS) where soft coarse-grain (CG) islands are embedded in a hard continuous 3D skeleton of ultrafine grains (UFGs). In this work, a series of HS with varying phase fractions and rheologies are studied based on several models. Model A focuses on a good fit with experimental data in the elastic–plastic transition region, model B focuses on a good fit at large-scale yielding, while in five intermediate models, phase rheology parameters are varied on a linear scale between the values for A and B. For each of the seven selected HS material models, structures with 19 different volumetric fractions of UFG were examined. It is found that the increase of UFG fraction leads to the monotonic increase of strength characteristics in HS material, while higher strain hardening rates in the phases lead to the enhancement of this effect. By contrast, the dependence of ductility characteristics on UFG fraction is non-monotonic having a local minimum at 30% UFG and a maximum at 60% UFG, while also significantly dependent on strain hardening in the phases. Namely, HS material with phases having significant strain hardening reveals the highest uniform elongation exceeding that in 100% CG material already at 40% UFG fraction. The fractions of UFG in a range of 58–62% form HS material with the highest possible uniform elongation.

Funder

Vetenskapsrådet

Lund University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3