Influence of thermomechanical processing parameters on critical temperatures to develop an Advanced High-Strength Steel microstructure

Author:

Romano-Acosta L. F.ORCID,García-Rincon O.,Pedraza J. P.,Palmiere E. J.

Abstract

AbstractA good selection of the thermomechanical processing parameters will optimize the function of alloying elements to get the most of mechanical properties in Advanced High-Strength Steels for automotive components, where high resistance is required for passenger safety. As such, critical processing temperatures must be defined taking into account alloy composition, in order for effective thermomechanical processing schedules to be designed. These critical temperatures mainly include the recrystallization stop temperature (T5%) and the transformation temperatures (Ar1, Ar3, Bs, etc.). These critical processing temperatures were characterized using different thermomechanical conditions. T5% was determined through the softening evaluation on double hit tests and the observation of prior austenite grain boundaries on the microstructure. Phase transformation temperatures were measured by dilatometry experiments at different cooling rates. The results indicate that the strain per pass and the interpass time will influence the most on the determination of T5%. The range of temperatures between the recrystallized and non-recrystallized regions can be as narrow as 30 °C at a higher amount of strain. The proposed controlled thermomechanical processing schedule involves getting a severely deformed austenite with a high dislocation density and deformation bands to increase the nucleation sites to start the transformation products. This microstructure along with a proper cooling strategy will lead to an enhancement in the final mechanical properties of a particular steel composition.

Funder

Consejo Nacional de Ciencia y Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3