Oxygen separation from air by the combined temperature swing and pressure swing processes using oxygen storage materials Y1−x(Tb/Ce)xMnO3+δ

Author:

Klimkowicz AlicjaORCID,Hashizume Takao,Cichy Kacper,Tamura Sayaka,Świerczek Konrad,Takasaki Akito,Motohashi Teruki,Dabrowski Bogdan

Abstract

AbstractHexagonal Y1−xRxMnO3+δ (R: other than Y rare earth elements) oxides have been recently introduced as promising oxygen storage materials that can be utilized in the temperature swing processes for the oxygen separation and air enrichment. In the present work, the average and local structures of Tb- and Ce-substituted Y0.7Tb0.15Ce0.15MnO3+δ and Y0.6Tb0.2Ce0.2MnO3+δ materials were studied, and their oxygen storage-related properties have been evaluated. The fully oxidized samples show the presence of a significant amount of the highly oxygen-loaded the so-called Hex3 phase, attaining an average oxygen content of δ ≈ 0.41 for both compositions. Extensive studies of the temperature swing process conducted in air and N2 over the temperature range of 180–360 °C revealed large and reversible oxygen content changes taking place with only a small temperature differences and the high dependence on the oxygen partial pressure. Significant for practical performance, the highest reported for this class of compounds, oxygen storage capacity of 1900 μmol O g−1 in air was obtained for the optimized materials and swing process. In the combined temperature–oxygen partial pressure swing process, the oxygen storage capacity of 1200 μmol O g−1 was achieved.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3