Abstract
Abstract
Optical coherence tomography enables quick scans of translucent objects in a simple environment. Here, we apply this technique to wood-based biofoam. We measure the geometrical properties of the foam, such as bubble eccentricity and density fluctuations, in addition to characterising the possible orientation of fibres. We find that the wood-based foams are extremely suitable for optical coherence tomography due to their translucent nature and large changes of optical density between air-filled bubbles and solid films. Measurement of bubble eccentricity revealed a reasonably high aspect ratio of 1:2, enabling the orientation of long cellulose fibres if added to the mixture. The results demonstrate an effective method to characterise foamlike metamaterials. Furthermore, focusing on eccentricity enables the adjustment of the foam’s manufacturing method and, in turn, helps to produce anisotropic structures.
Graphical abstract
Funder
Academy of Finland Center of Excellent
Academy of Finland
FinnCERES flagship program
Business Finland
Aalto-Yliopisto
Vilho, Yrjö and Kalle Väisälä Foundation
Aalto University
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献