Imaging of foam concrete air bubbles with an alternative method of combined digital holographic microscopy

Author:

Celik Bayar CaglarORCID,Onur Tugba Ozge,Ustabas Kaya Gulhan,Kunduraci Nazim

Abstract

AbstractFive different foam concretes were synthesized and examined. A new hybrid optical sensor, called combined digital holographic microscopy (CDHM), was proposed by combining microscopic fringe projection profilometry and lateral shearing digital holographic microscopy to detect the pore radii of produced foamed concretes. It was applied in addition to SEM and has not been applied to foam concretes before. Thanks to the proposed method, it was revealed that the measured CDHM radii contained a relative error of less than 6% compared to the SEM radii. The pore radii increased as the % of foaming agent used in the samples increased. Accordingly, the sample densities decreased and thermal insulation properties enhanced. Two-layer quantum chemical calculations performed at the ONIOM (M06-2X/6-31+G(d,p):UFF) theoretical level showed that thermodynamic stability of foam concretes increased as the % of foaming agent used, or more precisely, the pore radius, increased. The CDHM method provides results close to SEM and has superior features such as being more cost-effective, cleaner and faster. For this reason, it is thought that the proposed method will lead to future studies in terms of measuring pore radii as an alternative to SEM. Graphical Abstract The combined digital holographic microscopy (CDHM) method is proposed as an alternative to SEM with a relative error of less than 6% in determining the pore radius of foam concretes.

Funder

Zonguldak Bulent Ecevit University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3