Novel functionalized of ZnO with Sm3+, La3+, and Sr2+/ZnO single and tri-doped nanomaterials for photocatalytic degradation: synthesis, DFT, kinetics

Author:

Basseem MohgaORCID,Emam Abeer A.ORCID,Kamal Fatma H.,Gamal Azaa M.,Abo Faraha Samia A.

Abstract

AbstractPure zinc oxide, single-doped zinc oxide as 2 wt% of Lanthanum as (La DZ NPs), 2 wt% of Samarium (Sm DZ NPs), and 2 wt% of Strontium as (Sr DZ NPs), and tri-doped (Sm, La, Sr, T DZ NPs) were synthesized with a hydrothermal method. Additionally, these nanomaterials are used as an effective photocatalytic for the degradation of Reactive Red 43. These nanomaterials’ optical, particle size distribution, structural properties, and morphology were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) light, photoluminescence (PL), scanning electron microscopy (SEM) and energy-dispersive X-ray (XPS), transmission electron microscopy (TEM), and the point of zero charges (pHpzc). Molecular modeling simulation was calculated using density functional theory (DFT) to confirm some characterization. Moreover, these studies showed the crystal structure parameters changed with doped nanomaterials, and the experimental band gap fit theoretical calculation and demonstrated the reason for the widening of the band gap. An enhancement in the surface area of Sr DZ NPs recorded high value (SBET = 37.43 m2/g) indicated that it can be used as an efficient photocatalyst, where Sr DZ NPs showed the best photodegradation % of Reactive Red 43 dye with 93.43% compared to PZ (72.88%), La DZ NPs (52.54 3%), Sm DZ NPs (31.99%), and La, Sm, Sr T DZ NPs (20.55%). Furthermore, the pseudo-first-order kinetic model better fits the R2 values. Finally, the mechanism of degradation has been related to electronic configuration. In addition, the recyclability showed stability of nanomaterials under UV irradiation. Graphical abstract

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3