Machine learning enabled property prediction of carbon-based electrodes for supercapacitors
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Link
https://link.springer.com/content/pdf/10.1007/s10853-023-08981-8.pdf
Reference40 articles.
1. Singh MK, Gupta AK, Krishnan S, Guha N, Marimuthu S, Rai DK (2021) A new hierarchically porous Cu-MOF composited with rGO as an efficient hybrid supercapacitor electrode material. J Energy Storage 43:103301–103313. https://doi.org/10.1016/j.est.2021.103301
2. Krishnan S, Gupta AK, Singh MK, Guha N, Rai DK (2022) Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability. Chem Eng J 43:135042–135054. https://doi.org/10.1016/j.cej.2022.135042
3. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F (2020) Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev 120:7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535
4. Forse AC, Merlet C, Griffin JM, Grey CP (2016) New perspectives on the charging mechanisms of supercapacitors. J Am Chem Soc 138:5731–5744. https://doi.org/10.1021/jacs.6b02115
5. Wang DG, Liang Z, Gao S, Qu C, Zou R (2020) Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 404:213093–213115. https://doi.org/10.1016/j.ccr.2019.213093
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning‐Based Prediction of Supercapacitor Capacitance for MgCo2O4 Electrodes;ChemPhysChem;2024-09-09
2. Machine learning applications for electrospun nanofibers: a review;Journal of Materials Science;2024-07-30
3. Bayesian optimization-based XGBoost for performance Prediction of Carbon Nanotube Membranes;2024-07-01
4. Recent advances in artificial intelligence boosting materials design for electrochemical energy storage;Chemical Engineering Journal;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3