Synthesis and characterization of hierarchical suspended carbon fiber structures decorated with carbon nanotubes

Author:

Nguyen Sura,Flores Claudia B.ORCID,Madou Marc J.,Ray Mallar,Salazar Arnoldo,Vargas Regina,Aguilar Iris,Ornelas Nancy E.,Torres-Castro Alejandro,Martínez Sergio O.

Abstract

AbstractCarbon nanotubes (CNTs) and carbon microfibers (CMFs) have received significant attention due to their exceptional mechanical and electrical properties, which make them promising materials for various applications. This study introduces a novel approach to integrate CNTs and CMFs into a unified architecture by simultaneously conducting pyrolysis and chemical vapor deposition (CVD). The localized CVD of CNTs on suspended CMFs was achieved by utilizing Fe–Co nanoparticles (NPs) embedded in polyacrylonitrile (PAN) fibers as catalysts. Scanning electron microscopy and elemental analysis confirmed the formation of needle-like carbon structures on the pyrolyzed fiber surface, where carbon gases released from the pyrolyzing PAN fiber acted as the carbon source for the localized CVD. The incorporation of an additional carbon source, such as camphor vapor, significantly enhanced the growth and density of CNTs on the CMF. Various characterization techniques, including transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Atomic Force Microscopy, were employed to analyse the properties of the synthesized materials. The substantial increase in electrical conductivity upon incorporating CNTs highlights their positive influence on electrical properties and defect reduction. These characterization results highlight the potential applications of the fabricated structures in various fields, including sensors, lithium-ion electrodes, and microfabrication. In addition, the economic advantages of optimizing the process by integrating CVD with pyrolysis were assessed, revealing decreased operation time, lower energy consumption, and reduced chemical costs in comparison to conventional methods involving multiple intermediate processing steps. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3