Uncovering the generic and alloy-specific governing parameters of deformation-induced martensitic transformation in austenitic steel

Author:

Shen Chunguang,Mu Wangzhong,Wang Chenchong,Xu Wei,Hedström PeterORCID

Abstract

AbstractIn this work, a hybrid modeling approach, combining machine learning (ML) and computational thermodynamics, has been applied to predict deformation-induced martensitic transformation (DIMT) and explore the generic and alloy-specific parameters governing DIMT in austenitic steels. The DIMT model was established based on the ensemble ML algorithms and a comprehensive set of physical variables. The developed model is highly generalizable as validated on unseen alloys. The generic governing parameters of DIMT are in good agreement with previous studies in the literature. However, the evaluated alloy-specific governing parameters reveal large differences between grades, e.g., 204 series of austenitic stainless steels has a quite balanced correlation between strain, stress, temperature, and DIMT, while the 301 series has much stronger correlation between stress and DIMT. The findings in the current study emphasize the importance that a general DIMT model for steels should include both stress and strain, as well as other governing parameters, since DIMT can be both stress-assisted and strain-induced transformation, and often the effect of applied mechanical driving force and the formation of new nucleation sites interact. Graphical abstract

Funder

EIT RawMaterials

Ministry of Science and Technology of the People's Republic of China

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3