Abstract
AbstractThe resistance to chloride-induced stress corrosion cracking was investigated on a high-strength CrNiMnMoN austenitic stainless steel in the hot-rolled and in different cold-drawn states. The resistance against chloride-induced stress corrosion cracking was determined by slow strain rate tests in different chloride containing solutions at elevated temperatures. A fracture analysis was carried out using scanning electron microscopy. Improved resistance is obtained by the formation of deformation-induced twins. In addition, synchrotron X-ray diffraction measurements show full austenite stability during all cold-drawing steps.
Graphical abstract
Funder
Österreichische Forschungsförderungsgesellschaft
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献