TG/DSC/FTIR/QMS analysis of environmentally friendly poly(citronellyl methacrylate)-co-poly(benzyl methacrylate) copolymers

Author:

Worzakowska MartaORCID

Abstract

AbstractPolymer materials, not described in the literature so far, were obtained in the process of UV polymerization between methacrylic monomer obtained on the basis of natural, terpene alcohol: citronellyl methacrylate and benzyl methacrylate with different composition. The structures of the novel, environmentally friendly copolymers were confirmed by the FTIR and 13C CPMAS/NMR spectra. The copolymers containing more than 50% mass of citronellyl methacrylate were characterized by a high conversion of the double bonds determined on the basis of the FTIR and NMR spectra (95–96% and 92–94%, respectively). The novel materials were highly resistant to polar and non-polar solvents and the chemical stability. The glass transition temperature was from 15.8 to 19.9 °C which confirms that the obtained materials are elastomers at room temperature. Their thermal stability depended on their composition. It was from 185 to 205 °C (inert conditions) and from 149 to 214 °C (oxidizing conditions). TG/FTIR/QMS studies confirmed that their decomposition took place mainly as a depolymerization process combined with a subsequent breaking of the bonds in the resulting monomer/s at higher temperatures, which led to the formation of the gases with lower molecular masses. The main decomposition products emitted in an inert atmosphere were benzyl methacrylate, citronellyl methacrylate, 2-methylpropenal, citronellal and higher molecular mass compounds formed as a result of radical reactions between intermediate volatile products. In turn, under oxidizing conditions, as volatiles, benzyl methacrylate, citronellyl methacrylate, 2-methylpropenal, citronellal and small amounts of inorganic gases (CO, CO2, H2O) as a result of depolymerization and some combustion processes of the residues were indicated.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3