Abstract
Abstract
One of the main challenges in the field of heterogeneous catalysis is the involvement of thin solid films and membranes and their application in flow systems. In this regard, we report here the application of self-supported bacterial cellulose (BC) reinforced nanosized platinum (Pt)/N-doped bamboo-like carbon nanotube (NBCNT) hybrid catalyst membrane with a thickness of 35 ± 5 µm in the hydrogenation of n-butene. To synthetized the BC-NBCNT/Pt nanohybrid membrane catalyst a simple impregnation route was applied in a two-step process. As-prepared material was tested in a continuous flow system and the conversion was followed directly by using Fourier transform infrared spectroscopy. Furthermore, the fabricated films were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and specific surface area measurement (Brunauer–Emmett–Teller). Hydrogenation performance was studied on both single and double films. Results revealed that 97% conversion of n-butene can be achieved using these bacterial cellulose reinforced hybrid membranes.
Graphic abstract
Funder
European Union and the Hungarian Government
Horizon 2020
University of Miskolc
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献