Can Synbone® cylinders and deer femurs reproduce ballistic fracture patterns observed in human long bones?

Author:

Schwab NathalieORCID,Jordana XavierORCID,Soler Joan,Garrido Xavier,Brillas Pedro,Savio Andrés,Lavín Santiago,Ortega-Sánchez Marisa,Galtés IgnasiORCID

Abstract

AbstractWhereas gunshot injuries in human craniums have been well studied, reliable data on fracture patterns in ballistic long bone trauma remains scarce. Further information useful for forensic trauma interpretation and reconstruction may be retrieved from experimentally produced gunshot fractures. In order to avoid the use of human specimens for experimental research, it is of great interest to determine whether alternative models can reproduce the ballistic fracture patterns of human long bones. To address this question, we shot seven healthy adult human femurs and humeri each, ten samples each of two different polyurethane cylinders from Synbone® and four femurs from female red deer. The specimens were embedded in ballistic gelatin and perpendicularly shot from a distance of 2 m, using a 9-mm full metal jacket projectile at an impact velocity of 360 m/s. The macroscopical appearance of the detailed fracture pattern considering entry, exit and general cortical traits as well as the bullet’s energy lost upon impact were compared between the models. Despite some general similarities, neither of the two alternative models entirely reproduced the fracture patterns of human long bones. Comparing the two alternative models, the surrogate model revealed more significant differences to the human fracture than the animal model. This leads to the conclusion that the polyurethane material provides a different failure mechanism than real bone, underpinning the challenge in deploying an accurate analog.

Funder

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3