High-temperature phase transformations of hydroxylapatite and the formation of silicocarnotite in the hydroxylapatite–quartz–lime system studied in situ and in operando by Raman spectroscopy

Author:

Böhme NadineORCID,Hauke Kerstin,Dohrn Matthias,Neuroth Manuela,Geisler Thorsten

Abstract

AbstractSilica-/calcium phosphate ceramics are of high interest in various aspects. On the one hand, they play an important role in medical applications due to their excellent biocompatibility. Therefore, detailed knowledge of the formation and stability properties of the high-temperature products ensures production under controlled conditions. On the other hand, they were identified as sinter deposits in industrial kilns, where it can indicate problems caused by too high combustion temperatures during the thermal combustion processes. Here, we report the results of two Raman heating studies to ~ 1300 °C in 10 °C-steps with nano-crystalline hydroxylapatite (HAp) and tricalcium phosphate (TCP), and a Raman heating study of natural silicocarnotite (to ~ 1200 °C, 50 °C-steps). The Raman experiments were complemented with thermal analyses. The Raman spectra of nano-crystalline HAp recorded at high temperatures revealed the stepwise loss of adsorbed water and surface-bound OH groups until ~ 570 °C. Significant loss of structural OH started at ~ 770 °C and was completed at ~ 850 °C, when HAp transformed to β-TCP. Between ~ 1220 and ~ 1270 °C, β-TCP was found to transform to α-TCP. The room temperature Raman spectrum of silicocarnotite is characterized by an intense v1(PO4) band at 951 ± 1 cm−1 that shifts to ~ 930 cm−1 at ~ 1200 °C. Using hyperspectral Raman imaging with a micrometer-scale spatial resolution, we were able to monitor in operando and in situ the solid-state reactions in the model system Ca10(PO4)6(OH)2-SiO2-CaO, in particular, the formation of silicocarnotite. In these multi-phase experiments, silicocarnotite was identified at ~ 1150 °C. The results demonstrate that silicocarnotite can form by a reaction between β-TCP and αL-Ca2SiO4, but also between β-TCP and CaSiO3 with additional formation of quartz.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

RWE Power AG

DFG

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3