The influence of parent austenite characteristics on the intervariant boundary network in a lath martensitic steel

Author:

Mirzaei Ahmad,Ghaderi Razieh,Hodgson Peter D.,Ma Xiang,Rohrer Gregory S.,Beladi HosseinORCID

Abstract

AbstractThe influence of the parent austenite deformation state on the intervariant boundary network (i.e., population, plane orientation, and connectivity) of a lath martensitic microstructure was investigated using conventional EBSD mapping and five-parameter boundary analysis approach along with quantification of boundary connectivity using homology metrics. The lath martensite largely revealed a bimodal misorientation angle distribution, closely matched with the Kurdjumov–Sachs (K–S) orientation relationship. The application of deformation significantly changed the distribution, gradually reducing the intensity of the 60° misorientation angle peak. This was largely ascribed to substructure development within the parent austenite upon deformation, which stimulates particular variant/s having a habit plane (011)α′ closely parallel to the primary (111)γ and/or secondary (1$$\overline{1 }$$ 1 ¯ 1)γ slip plane. The interaction of these variants eventually promoted specific intervariant boundaries (e.g., 60°/[111], 10.5°/[011], and 49.5°/[110]) at the expense of 60°/[011]. The application of deformation in the parent austenite did not change the intervariant boundary plane character distribution, which mostly exhibited an anisotropic character terminated on {110} planes because of the displacive nature of the martensitic transformation. However, the extent of anisotropy progressively decreased with increasing strain in the austenite prior to transformation. The grain boundary network connectivity was markedly altered due to the local variant selection induced by the deformation. Deformation in the austenite regime generally decreased the connectivity of boundaries having a {110} plane orientation. The intervariant boundaries with the {110} twist character also displayed a similar trend, though the connectivity of {110} tilt boundaries progressively enhanced with increasing strain. The former was closely matched with a decrease in the population of 60°/[110] intervariant boundaries with the strain. The current findings suggest that the intervariant boundary network of lath martensite can be manipulated through changes in the parent austenite deformation state which, in turn, can be used to enhance key final product properties such as toughness. Graphical abstract

Funder

Deakin University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3