Interlaminar fracture toughness of carbon fibre composites with electrospun nanofibrous interleaves of polystyrene and cellulose nanocrystals

Author:

Kanari Konstantina,Wisnom Michael R.,Harniman Robert,Eichhorn Stephen J.ORCID

Abstract

AbstractPolystyrene nanofibres reinforced with cellulose nanocrystals have been produced by electrospinning. Two different orientations of the nanofibres were produced, namely aligned and random, and these nanofibrous interleaves were investigated both as-spun and after thermal treatment. Aligned nanofibres exhibited a 2500% increase in their Young’s modulus compared to the randomly orientated materials, while the ultimate tensile strength increased by up to 300%. It is also demonstrated that crazing occurs in the nanofibres, which is thought to enhance the fracture properties of the materials. Interleaves of both orientations were then included in a carbon fibre-reinforced polymer laminate. The fracture toughness of the laminate was determined under both mode I and mode II testing. No increases in mode I toughness were observed. It was, however, found that the aligned interleaves increased the mode II toughness of the composite laminate (from 1.9 ± 0.3 to 2.7 ± 0.2 kJ m−2). This increase is demonstrated to be due to a combination of nanofibre bridging and the formation of microcracks in the resin under applied tensile and shear load.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3