Abstract
AbstractAlloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles.
Graphical abstract
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Universität Duisburg-Essen
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献