Langer–Schwartz–Kampmann–Wagner precipitation simulations: assessment of models and materials design application for Cu precipitation in PH stainless steels

Author:

Sheng Ze,Bonvalet Rolland Manon,Zhou Tao,Odqvist Joakim,Hedström Peter

Abstract

Abstract Quantitative modelling of precipitation kinetics can play an important role in a computational material design framework where, for example, optimization of alloying can become more efficient if it is computationally driven. Precipitation hardening (PH) stainless steels is one example where precipitation strengthening is vital to achieve optimum properties. The Langer–Schwartz–Kampmann–Wagner (LSKW) approach for modelling of precipitation has shown good results for different alloy systems, but the specific models and assumptions applied are critical. In the present work, we thus apply two state-of-the-art LSKW tools to evaluate the different treatments of nucleation and growth. The precipitation modelling is assessed with respect to experimental results for Cu precipitation in PH stainless steels. The LSKW modelling is able to predict the precipitation during ageing in good quantitative agreement with experimental results if the nucleation model allows for nucleation of precipitates with a composition far from the equilibrium and if a composition-dependent interfacial energy is considered. The modelling can also accurately predict trends with respect to alloy composition and ageing temperature found in the experimental data. For materials design purposes, it is though proposed that the modelling is calibrated by measurements of precipitate composition and fraction in key experiments prior to application. Graphic abstract

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3