Environmentally friendly mesoporous SiO2 with mixed fiber/particle morphology and large surface area for enhanced dye adsorption

Author:

Samy A.,Ismail A. M.,Ali HebaORCID

Abstract

AbstractRice straw is made up of hemicelluloses (19–27%), celluloses (32–47%), lignin (5–24%), and ash (13–20%), which are all agricultural waste. Rice straw ash is considered a green/eco-friendly source of silicon dioxide (SiO2). This study focuses on the synthesis and characterization of different mesoporous SiO2nanostructures derived from rice straw waste material through controlling the pH of the extraction process for the first time. X-ray diffraction (XRD), Fourier transform infrared (FTIR), diffuse reflectance spectroscopy (DRS), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscope (HRTEM), zeta potential, and surface area analyzer were used to examine the produced materials. Amorphous silica nanostructures, S3 and S7, were produced at pH values of 3 and 7, respectively, according to XRD measurement, whereas higher pH causes the production of crystalline silica (S9). The pH of the extraction has a major effect on the morphology of the resultant nanosilica, as S3 has an irregular shape, S7 is made of distorted spherical particles, and S9 is composed of mixed fiber and spherical particle structures. For pollutant removal, greenly produced SiO2nanostructures were used. The optimal mesoporous nanosilica (S9) demonstrated the highest surface roughness, the largest surface area (262.1 m2/g), the most negative zeta potential (− 20.2 mV), and the best dye adsorption capacity (71.4 mg/g).

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3