Nanocomposites based on hydroxyapatite/lithium oxide and graphene oxide nanosheets for medical applications

Author:

Afifi M.,El-Naggar Mehrez E.ORCID,Muhammad Shabbir,Alghamdi Noweir Ahmad,Wageh S.,Salem Salem R.,Alhashmialameer Dalal,Taleb Manal Abou

Abstract

AbstractMetal-based bioceramics are developed to imitate the natural bones to be used as bone substitutes. Different nanocomposites are synthesized using hydroxyapatite (HAP), Li2O and GO to fabricate HAP, Li2O, HAP/Li2O, HAP/GO and HAP/Li2O/GO. XRD shows the change in crystal structure upon adding the three nanocomposites to each other. Besides, FTIR and XPS explain the functional groups of the compositions and analyze their surface composition. The TEM explains the morphological changes for particles dimensions of HAP/Li2O/GO showing a length of 20 nm for HAP and a size of 6 nm for Li2O sphere. In addition, SEM graphs explained the enhancement of HAP/Li2O/GO porosity showing a particle size of 0.3–0.4 µm and length of 0.8 µm. Further, roughness parameters are improved upon adding HAP and Li2O to GO, showing a roughness average value of 57.80 nm. Moreover, the cell viability of HAP/Li2O/GO is examined and shows a maximum value of 97.4 ± 1.2%. In addition, the antibacterial activity exhibited by HAP/Li2O/GO against (Escherichia coli = E. coli) and (Staphylococcus aureus = S. aureus) showed an inhibition zone of 13.4 ± 1.2 mm 12.3 ± 1.3 mm. Adding HAP presents an improvement in surface roughness as well as cell viability and antibacterial activity. Besides, the microhardness has been improved from 2.6 ± 0.1 GPa to 3.1 ± 0.2 for pure HAP and HAP/Li2O/GO, respectively. Therefore, combining HAP, GO and Li2O results in a nanocomposite of enhanced biocompatibility and can be suggested for bone biomedical applications.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3