Facile synthesis of cubic cuprous oxide for electrochemical reduction of carbon dioxide

Author:

Zeng JuqinORCID,Castellino MicaelaORCID,Bejtka KatarzynaORCID,Sacco AdrianoORCID,Di Martino Gaia,Farkhondehfal M. AminORCID,Chiodoni AngelicaORCID,Hernández SimelysORCID,Pirri Candido F.ORCID

Abstract

Abstract High level of atmospheric carbon dioxide (CO2) concentration is considered one of the main causes of global warming. Electrochemical conversion of CO2 into valuable chemicals and fuels has promising potential to be implemented into practical and sustainable devices. In order to efficiently realize this strategy, one of the biggest efforts has been focused on the design of catalysts which are inexpensive, active and selective and can be produced through green and up-scalable routes. In this work, copper-based materials are simply synthesized via microwave-assisted process and carefully characterized by physical/chemical/electrochemical techniques. Nanoparticle with a cupric oxide (CuO) surface as well as various cuprous oxide (Cu2O) cubes with different sizes is obtained and used for the CO2 reduction reaction. It is observed that the Cu2O-derived electrodes show enhanced activity and carbon monoxide (CO) selectivity compared to the CuO-derived one. Among various Cu2O catalysts, the one with the smallest cubes leads to the best CO selectivity of the electrode, attributed to a higher electrochemically active surface area. Under applied potentials, all Cu2O cubes undergo structural and morphological modification, even though the cubic shape is retained. The nanoclusters formed during the material evolution offer abundant and active reaction sites, leading to the high performance of the Cu2O-derived electrodes. Graphic abstract

Funder

Istituto Italiano di Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3