Modeling glass transition temperatures of epoxy systems: a machine learning study

Author:

Meier Sven,Albuquerque Rodrigo Q.,Demleitner Martin,Ruckdäschel HolgerORCID

Abstract

Abstract The use of machine learning (ML) models to screen new materials is becoming increasingly common as they accelerate material discovery and increase sustainability. In this work, the chemical structures of 16 epoxy resins and 19 curing agents were used to build an ML ensemble model to predict the glass transition ($$T_g$$ T g ) of 94 experimentally known thermosets. More than 1400 molecular descriptors were calculated for each molecule, of which 119 were chosen based on feature selection performed by principal component analysis. The quality of the trained model was evaluated using leave-one-out cross-validation, which yielded a mean absolute error of 16.15$$^{\circ }$$ C and an $$R^2$$ R 2 value of 0.86. The trained model was also used to predict $$T_g$$ T g for 4 randomly selected resin/hardener combinations for which no experimental data were available. The same combinations were then prepared and measured in the laboratory to further validate the ML model. Excellent agreement was found between experimental and predicted $$T_g$$ T g values. The current ML model was created using only theoretical features, but could be further improved by adding experimental or quantum mechanical properties of the individual molecules as well as experimental processing parameters. The results presented here contribute to improving sustainability and accelerating the discovery of novel materials with desired target properties. Graphical Abstract

Funder

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3