Abstract
AbstractThe use of magnetic nanoparticles in C–C coupling reactions enables the facile recovery of the catalyst under environmentally friendly conditions. Herein, the synthesis of Pd/Fe@Fe3O4 nanoparticles by the reduction of Pd2+ and oxidation of Fe on the surface of preformed Fe@Fe3O4 is reported. The nanoparticles were characterized using a variety of analytical techniques (transmission electron microscopy, Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction) to determine their size, structure, and chemical composition. The catalytic efficiency of these nanoparticles in classical Suzuki–Miyaura coupling reactions was investigated. The nanoparticles achieved high catalytic activity with the application of local heating by an alternating magnetic field. An investigation was conducted at identical temperatures to compare global heating with the application of an external magnetic field; magnetic heating demonstrated excellent substrate conversion in lesser time and at a lower temperature. The catalyst could also be recycled and reused three times, with ~ 30% decrease in the substrate conversion, which is most likely due to the agglomeration of the Pd nanoparticles or poisoning of the Pd catalyst. This approach, which takes advantage of the catalytic activity and magnetic susceptibility of magnetic nanoparticles, can be applied to several organic transformations to improve their efficiency.
Graphical abstract
Funder
Dirección General de Universidades e Investigación
Comunidad de Madrid y European Social Fund
Universidad Autónoma de Madrid
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献