Abstract
AbstractThe lithium niobate–lithium tantalate solid solution’s phase diagram was investigated using experimental data from differential thermal analysis (DTA) and crystal growth. We used XRF analysis to determine the elemental composition of the crystals. The Neumann–Kopp rule provided essential data for the end members lithium niobate (LN) and lithium tantalate (LT). The heats of fusion of the end members, given by DTA measurements, are 103 kJ/mol at 1531 K for LN and 289 kJ/mol at 1913 K for LT. These values were used as input parameters to generate the data. This data served as the basis for calculating a phase diagram for LN-LT solid solutions. Finally, based on the experimental data and a thermodynamic solution model, the Calphad Factsage module optimized the phase diagram. We also generated thermodynamic parameters for Gibbs’ excess energy of the solid solution. A plot of the segregation coefficient as a function of Ta concentration was derived from the phase diagram.
Funder
Deutsche Forschungsgemeinschaft
Leibniz-Institut für Kristallzüchtung (IKZ) im Forschungsverbund Berlin e.V.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Bartasyte A, Glazer A, Wondre F, Prabhakaran D, Thomas P, Huband S, Keeble D, Margueron S (2012) Growth of LiNb1− xTaxO3 solid solution crystals. Mater Chem Phys 134:728–735
2. Wood I, Daniels P, Brown R, Glazer A (2008) Optical birefringence study of the ferroelectric phase transition in lithium niobate tantalate mixed crystals: LiNb1− xTaxO3. J Phys: Condens Matter 20:235237
3. Shimura F, Fujino Y (1977) Crystal growth and fundamental properties of LiNb1− yTayyO3. J Cryst Growth 38:293–302
4. Xue D, Betzler K, Hesse H (2000) Dielectric properties of lithium niobate–tantalate crystals. Solid State Commun 115:581–585
5. Roshchupkin D, Emelin E, Plotitcyna O, Rashid F, Irzhak D, Karandashev V, Orlova T, Targonskaya N, Sakharov S, Mololkin A (2020) Single crystals of ferroelectric lithium niobate–tantalate LiNb1–xTaxO3 solid solutions for high-temperature sensor and actuator applications. Acta Crystallographica Sect B Structural Sci Cryst Eng Mater 76:1071–1076