Mineralization of clofibric acid by persulfate-promoted catalytic subcritical water oxidation process using CoFe2O4@SiO2 catalyst

Author:

Görmez ÖzkanORCID

Abstract

AbstractThe design and use of innovative treatment processes are very important in preventing the possible toxic effects of organic pollutants in aquatic environments. One of these methods is the subcritical water oxidation method, which has been used recently. In the current study, the mineralization of clofibric acid (CFA) was carried out under more effective and mild conditions using persulfate (PS) as an oxidant and CoFe2O4@SiO2 catalyst by the subcritical water oxidation (sub-CWO) process. Characterization of the synthesized catalyst was performed through XRD, FTIR, TEM and SEM–EDS analyses. In the CFA oxidation with persulfate-promoted catalytic Sub-CWO process, optimum working conditions was determined as 15 mM PS, 40 min, 383 K, and 0.3 g L−1 catalyst dosage using the response surface method and Box–Behnken design. The catalyst's efficiency remained relatively stable after three cycles under optimal conditions, resulting in a 97% total organic carbon (TOC) removal. Decomposition products were determined and a degradation mechanism was proposed.

Funder

Mersin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3