The development of low-temperature heat-treatable high-pressure die-cast Al–Mg–Fe–Mn alloys with Zn

Author:

Zhu Xiangzhen,Liu Fuchu,Wang Shihao,Ji ShouxunORCID

Abstract

AbstractIn the present work, a novel low-temperature heat-treatable recycled die-cast Al–Mg alloy was developed by adding Zn into non-heat-treatable Al–5Mg–1.5Fe–0.5Mn alloy. The results showed that Zn additions resulted in the formation of equilibrium phase T-Mg32(Al, Zn)49 under as-cast condition, which can be dissolved into the α-Al matrix at a relatively low solution temperature (430 °C) and thus set the base for the low-temperature heat treatment. The mechanical test results indicated that Zn additions had a smooth liner improvement in the strength of all as-cast alloys and T6-state alloys with 1% and 2% Zn as its concentration increased but resulted in a sharp improvement on the strength of T6-state alloy when Zn concentration increased from 2 to 3%. TEM analysis revealed that the precipitate in T6-state Al–5Mg–1.5Fe–0.5Mn–3Zn alloy is η′ phase, rather than the widely reported T″ or T′ phase in other Al–Mg–Zn alloys with approximately same Mg and Zn concentrations. After the optimized low-temperature T6 heat treatment (solution at 430 °C for 60 min and ageing at 120 °C for 16 h), the Al–5Mg–1.5Fe–0.5Mn–3Zn alloy exhibits the yield strength of 321 MPa, ultimate tensile strength of 445 MPa and elongation of 6.2%.

Funder

Innovate UK

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3