Abstract
AbstractIn the present work, a novel low-temperature heat-treatable recycled die-cast Al–Mg alloy was developed by adding Zn into non-heat-treatable Al–5Mg–1.5Fe–0.5Mn alloy. The results showed that Zn additions resulted in the formation of equilibrium phase T-Mg32(Al, Zn)49 under as-cast condition, which can be dissolved into the α-Al matrix at a relatively low solution temperature (430 °C) and thus set the base for the low-temperature heat treatment. The mechanical test results indicated that Zn additions had a smooth liner improvement in the strength of all as-cast alloys and T6-state alloys with 1% and 2% Zn as its concentration increased but resulted in a sharp improvement on the strength of T6-state alloy when Zn concentration increased from 2 to 3%. TEM analysis revealed that the precipitate in T6-state Al–5Mg–1.5Fe–0.5Mn–3Zn alloy is η′ phase, rather than the widely reported T″ or T′ phase in other Al–Mg–Zn alloys with approximately same Mg and Zn concentrations. After the optimized low-temperature T6 heat treatment (solution at 430 °C for 60 min and ageing at 120 °C for 16 h), the Al–5Mg–1.5Fe–0.5Mn–3Zn alloy exhibits the yield strength of 321 MPa, ultimate tensile strength of 445 MPa and elongation of 6.2%.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献