Fluorine-free superhydrophobic PDMS-coated silica particles for oil–water separation and liquid marbles

Author:

Hanosh Swithin,Unnikrishnan V. K.,George Sajan D.ORCID

Abstract

AbstractIn this paper, we report the fabrication of fluorine-free hydrophobic particles via grafting fluidic polydimethylsiloxane onto silica particles through a facile wet lab technique at room temperature. A cotton fabric coated with the prepared hydrophobic particles shows potential as a membrane to separate oil and water due to hydrophobic behavior (equilibrium water contact angle ~ 145°) and superoleophilicity. The hydrophobic nature of the fabric is varied only slightly after immersing the fabric in 1 M of acidic and basic solution for seven days and thus ensured the chemical stability of the fabric, whereas the physical stability examined via abrasion test elucidates minimal change in wettability even after 50 cycles of abrasion tests. The oil–water separation efficiency of the membrane made from particle-coated cotton fabric is found to be greater than 95% even after 50 cycles of usage for various oils. Further, these particles are used to cover aqueous droplets to create liquid marbles. The stability of the liquid marble is investigated against solution with different surface tension, pH values, and viscosity. The particles demonstrate the potential to create stable liquid marbles even when the surface tension of liquid is as low as ~ 32 mN m−1. In addition, the liquid marbles are created from aqueous solutions having pH values ranging from 1 to 14 and with liquids having viscosity over a wide range. The substrate temperature-dependent evaporation studies of the liquid marbles unambiguously elucidate the porous nature of the surface and manifest a temperature-dependent liquid marble height decrease in evaporation time scale. Graphical Abstract

Funder

SERB, Govt of India

DST, Govt of India

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3