Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N2O decomposition

Author:

Ho Phuoc Hoang,Jabłońska MagdalenaORCID,Beltrami Giada,Martucci Annalisa,Cacciaguerra Thomas,Paulus Werner,Di Renzo Francesco,Fornasari Giuseppe,Vaccari Angelo,Benito Patricia,Palkovits Regina

Abstract

AbstractA series of M-AlOx mixed oxides (M = Cu, Co, Ni) with the addition of high loadings of rare earth elements (REE, R = Ce, Nd, Pr; R0.5M0.8Al0.2, molar ratio) were investigated in N2O decomposition. The precursors were prepared by coprecipitation and subsequent calcination at 600 °C. The obtained mixed metal oxides were characterized by X-ray diffraction with Rietveld analysis, N2 sorption, and H2 temperature-programmed reduction. Depending on the nature of REE and the initial M-Al system, R cations could be separately segregated in oxide form or coordinated with the transition metal cations and form mixed structures. The addition of Ce3+ consistently led to nanocrystalline CeO2 mixed with the divalent oxides, whereas the addition of Nd3+ or Pr3+ resulted in the formation of their respective oxide phases as well as perovskites/Ruddlesden–Popper phases. The presence of REE modified the textural and redox properties of the calcined materials. The rare earth element-induced formation of low-temperature reducible MOx species that systematically improved the N2O decomposition on the modified catalysts compared to the pristine M-Al materials by the order of Co > Ni > Cu. The Ce0.5Co0.8Al0.2 catalyst revealed the highest activity and remained stable (approximately 90% of N2O conversion) for 50 h during time-on-stream in 1000 ppm N2O, 200 ppm NO, 20 000 ppm O2, 2500 ppm H2O/N2 balance at WHSV = 16 L g−1 h−1.

Funder

SINCHEM Grant

Federal Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3