Mullite photonic glasses with exceptional thermal stability for novel reflective thermal barrier coatings

Author:

Gomez-Gomez AlbertoORCID,Ribas Gomes Diego,Winhard Benedikt F.,Maragno Laura G.,Krekeler Tobias,Ritter Martin,Furlan Kaline P.ORCID

Abstract

AbstractThermal barrier coatings are essential materials systems for insulating and protecting substrates exposed to high temperatures. In such systems, the heat transfer has three possible paths: conduction, convection and irradiation. The higher the operating temperature, the more important it is to control or protect against the radiative component, since the radiative heat flux becomes non-negligible. The radiation can be controlled by the use of ceramic-based photonic nanostructures, namely photonic crystals and photonic glasses, creating so-called reflective thermal barrier coatings. In this work, mullite inverse photonic glasses (PhG) have been produced by thermally induced reaction on sol–gel-based silica structures coated with nanometric films of Al2O3 by atomic layer deposition. The conversion to mullite was carried out following a two-stage heat-treatment. The pre-annealing associated with the further mullite formation results in an excellent structural stability of these PhGs up to 1500 °C, being able to retain their high reflectivity in the near infrared range. Therefore, this structure can be considered for next-generation reflective thermal barrier coatings. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3