Nickel-doped silver nanoclusters as a mechanism to capture photons

Author:

Ahmed Abdallah Y. A.,Hamed Mohammed S. G.,Ike Jude N.,Mola Genene TessemaORCID

Abstract

AbstractNarrow width of optical absorption of conducting polymers and photons energy losses have been the challenges for fabricating highly efficient thin-film organic solar cell. Nickel-doped silver nanoclusters (Ni/Ag NCs) are employed here to capture more photons using polymers blend solar absorber medium to improve solar cell performances. The poly-3-hexylthiophene and (6-6)phenyl-C61-butyric acid methyl ester molecules blend were used a solar absorber layer in this investigation. The solar cells fabricated with NCs exhibited enhanced opt-electronic properties compared to the reference solar cell. Consequently, the experimental results suggest that the power conversion efficiency (PCE) has substantially increased with the incorporations of NCs in absorber layer, which is dependent on the concentrations of NCs in the medium. The maximum PCE achieved, in this work, is $$\eta $$ η = 6.2% at 2% of NCs by weight, which has exhibited to the lowest energy losses compared to other doping levels. This improvement in PCE is attributed to the occurrence of local surface plasmon resonance effect due to the inclusion of Ni/Ag NCs in polymer matrix. The results provide valuable insights on the use of Ni/Ag NCs for efficient photons capture in thin-film polymers blend medium.

Funder

National Research Foundation South Africa

University of KwaZulu-Natal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3